Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biol ; 23(4): 100819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918046

RESUMO

Maternal diabetes can influence the development of offspring during fetal life and postnatally. Curatella americana is a plant used as a menstrual cycle regulator and to prevent diabetes. This study evaluates the effects of C. americana aqueous extract on the estrous cycle and preimplantation embryos of adult female pups from diabetic rats. Female Sprague Dawley newborn rats received Streptozotocin or vehicle (citrate buffer). At adulthood, were submitted to the Oral Glucose Tolerance Test, and mated. The female rats were obtained and were distributed into four experimental groups: OC and OC/T represent female pups of control mothers and received water or plant extract, respectively; OD and OD/T represent female pups of diabetic mothers and received water or plant extract, respectively. The estrous cycle was followed for 10 days, the rats were mated and on gestational day 4 was performed preimplantation embryo analysis. Phenolic composition and biogenic amines in the extract were analyzed about the influence of the thermal process. The female pups from diabetic dams exhibited glucose intolerance, irregular estral cycle and a higher percentage of pre-embryos in delayed development (morula stage). After C. americana treatment, OD/T group no present a regular estrous cycle. Furthermore, the infusion process increases phenolic compounds and biogenic amines levels, which can have anti-estrogenic effect, anticipates the early embryonic development, and impair pre-implantation embryos. Thus, the indiscriminate use of medicinal plants should be avoided in any life phases by women, especially during pregnancy.


Assuntos
Diabetes Mellitus Experimental , Dilleniaceae , Humanos , Gravidez , Ratos , Animais , Feminino , Adulto , Ratos Sprague-Dawley , Extratos Vegetais/toxicidade , Desenvolvimento Embrionário , Água , Aminas Biogênicas
2.
J Ethnopharmacol ; 311: 116459, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023837

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plants and herbs have been used by women throughout history for therapeutic purposes. Strychnos pseudoquina, a plant used in the treatment of various diseases, can also function as an abortive herb. There is no scientific confirmation of its effects during pregnancy, and the activity of this plant needs to be substantiated or refuted with experimental evidence. AIM OF THE STUDY: Evaluating the effect of the S. pseudoquina aqueous extract on maternal reproductive toxicity and fetal development. MATERIALS AND METHODS: The aqueous extract of S. pseudoquina bark was evaluated in Wistar rats. Pregnant rats were distributed into four experimental groups (n = 12 rats/group): Control = treated with water (vehicle); Treated 75, Treated 150, and Treated 300 = treated with S. pseudoquina at dose 75, 150 and 300 mg/kg, respectively. The rats were treated by an intragastric route (gavage) from day 0 to day 21 of pregnancy. At the end of pregnancy, maternal reproductive outcomes, organs, biochemical and hematological profiles, fetuses, and placentas were analyzed. Maternal toxicity was evaluated through body weight gain, water, and food intake. With knowledge of the harmful dosage of the plant, other rats were used on gestational day 4 for the evaluation of morphological analyses before embryo implantation. P < 0.05 was considered as statistically significant. RESULTS: The S. pseudoquina treatment showed elevated liver enzymatic activities. The Treated 300 group presented toxicity with reduced maternal body weight, water and food intake, and increased kidney relative weight compared to those of the Control group. At a high dosage, the plant presents an abortifacient activity, confirmed by embryo losses before and after implantation and degenerated blastocysts. In addition, the treatment contributed to an increased percentage of fetal visceral anomalies, decreased ossification sites, and intrauterine growth restriction (300 mg/kg dose). CONCLUSION: In general, our study showed that an aqueous extract of S. pseudoquina bark caused significant abortifacient activity that testified to its traditional use. Furthermore, the S. pseudoquina extract caused maternal toxicity that contributed to impaired embryofetal development. Therefore, the use of this plant should be completely avoided during pregnancy to prevent unintended abortion and risks to maternal-fetal health.


Assuntos
Abortivos , Strychnos , Gravidez , Ratos , Feminino , Animais , Extratos Vegetais/farmacologia , Ratos Wistar , Peso Corporal , Aumento de Peso , Água
3.
Reprod Sci ; 30(9): 2813-2828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37002533

RESUMO

Diabetes mellitus increases the risk of obstetric complications, morbidity, and infant mortality. Controlled nutritional therapy with micronutrients has been employed. However, the effect of calcium (Ca2+) supplementation on diabetic pregnancy is unclear. We aimed to evaluate whether diabetic rats supplemented with Ca2+ during pregnancy present better glucose tolerance, redox status, embryonic and fetal development, newborn weight, and the prooxidant and antioxidant balance of male and female pups. For this, newborn rats received the beta-cytotoxic drug streptozotocin for inducing diabetes on the day of birth. In adulthood, these rats were mated and treated with Ca2+ twice a day from day 0 to day 20 of pregnancy. On day 17, the pregnant rats were submitted to the oral glucose tolerance test (OGTT). At the end of pregnancy, they were anesthetized and killed to collect blood and pancreas samples. The uterine horns were exposed for an evaluation of maternal reproductive outcomes and embryofetal development, and the offspring's liver samples were collected for redox status measurement. Nondiabetic and diabetic rats supplemented with Ca2+ showed no influence on glucose tolerance, redox status, insulin synthesis, serum calcium levels, and embryofetal losses. The reduced rate of newborns classified as adequate for gestational age (AGA) and higher rates of LGA (large) and small (LGA) newborns and higher -SH and GSH-Px antioxidant activities in female pups were observed in diabetic dams, regardless of supplementation. Thus, maternal supplementation caused no improvement in glucose tolerance, oxidative stress biomarkers, embryofetal growth and development, and antioxidants in pups from diabetic mothers.


Assuntos
Cálcio , Diabetes Mellitus Experimental , Gravidez , Ratos , Animais , Masculino , Feminino , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/complicações , Ratos Wistar , Estresse Oxidativo , Suplementos Nutricionais , Glucose/farmacologia , Glicemia
4.
Reprod Sci ; 30(8): 2416-2428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36849856

RESUMO

We used uncontrolled maternal diabetes as a model to provoke fetal growth restriction in the female in the first generation (F1) and to evaluate reproductive outcomes and the possible changes in metabolic systems during pregnancy, as well as the repercussions at birth in the second generation (F2). For this, nondiabetic and streptozotocin-induced severely diabetic Sprague-Dawley rats were mated to obtain female pups (F1), which were classified as adequate (AGA) or small (SGA) for gestational weight. Afterward, we composed two groups: F1 AGA from nondiabetic dams (Control) and F1 SGA from severely diabetic dams (Restricted) (n minimum = 10 animals/groups). At adulthood, these rats were submitted to the oral glucose tolerance test, mated, and at day 17 of pregnancy, blood samples were collected to determine glucose and insulin levels for assessment of insulin resistance. At the end of the pregnancy, the blood and liver samples were collected to evaluate redox status markers, and reproductive, fetal, and placental outcomes were analyzed. Maternal diabetes was responsible for increased SGA rates and a lower percentage of AGA fetuses (F1 generation). The restricted female pups from severely diabetic dams presented rapid neonatal catch-up growth, glucose intolerance, and insulin resistance status before and during pregnancy. At term pregnancy of F1 generation, oxidative stress status was observed in the maternal liver and blood samples. In addition, their offspring (F2 generation) had lower fetal weight and placental efficiency, regardless of gender, which caused fetal growth restriction and confirmed the fetal programming influence.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Humanos , Ratos , Gravidez , Animais , Feminino , Placenta/metabolismo , Ratos Wistar , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Ratos Sprague-Dawley , Diabetes Gestacional/metabolismo , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA